STUDIES ON ORALLY ACTIVE CEPHALOSPORINS

I. SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF NEW 3-SUBSTITUTED CARBAMOYLOXYMETHYL CEPHALOSPORINS

Shigeto Negi, Motosuke Yamanaka, Isao Sugiyama, Yuki Komatsu, Manabu Sasho, Akihiko Tsuruoka, Atsushi Kamada, Itaru Tsukada, Ryoichi Hiruma, Kanemasa Katsu and Yoshimasa Machida

Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-26, Japan

(Received for publication May 11, 1994)

The synthesis and antibacterial activities of 7β -[2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-3-*N*,*N*-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylic acid (E1100) and its analogs are described, as well as oral absorbability and *in vivo* activities of the 1-(isopropoxycarbonyloxy)ethyl ester (E1101) and its analogous esters. The introduction of acyclic and cyclic lower alkyl groups at the *N*-position of 3-carbamoyloxymethyl cephems influences antibacterial activities, especially against *H. influenzae*, and oral absorbability of their prodrug esters. The structure-activity relationships are also discussed.

Since the discovery of cefteram pivoxil¹⁾ and cefixime²⁾, a number of orally active cephalosporins^{3~9)} bearing an aminothiazole moiety at the C-7 side chain have been reported and developed, such as cefpodoxime proxetil³⁾ (CPDX-PR) (Fig. 1) and cefdinir⁴⁾ (CFDN) (Fig. 2). Compared with first generation oral cephalosporins like cephalexin and cefaclor (CCL), these newly developed compounds show a wider antibacterial spectrum and high stability against various β -lactamases, and consequently, have made a great contribution to the treatment of infectious diseases. Much effort in this field has been made to find

a more well-balanced and more active compound with better oral bioavailability⁹⁾. In the course of our research program, we have found that 7-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]cephalosporins modified with a variety of N-substituted carbamoyloxymethyl groups at the C-3 position and their prodrug esters at the C-4 position, represented as I in Fig. 3, show potent antibacterial

Fig. 3. Structure of *N*-substituted carbamoyloxymethyl cephems.

1508

activity against both Gram-positive and Gram-negative bacteria as well as good oral absorption.

This report describes the synthesis and structure-activity relationships of the new cephalosporins and their *in vivo* efficacy.

Chemistry

New cephalosporins with N-substituted carbamoyloxymethyl at the C-3 position were prepared by the routes shown in Scheme $1 \sim 5$. Scheme 1 and Scheme 2 show two general methods for modification of 3-hydroxymethyl cephems (**1a**, **1b**) to 7-protected 3-substituted carbamoyloxy cephems. One is the N,N'-carbonyldiimidazole method¹¹ (Method a) and another is the isocyanate method (Method b). Scheme 3 illustrates the general route from 7-protected 3-substituted carbamoyloxy cephems to aminothiazolyl cephem carboxylic acids and their prodrug esters. Scheme 4 describes the synthetic route for N-methylpiperazine cephems, because they were synthesized from 3-hydroxymethyl cephem oxide (**13**). Scheme 5 shows the route for *anti* hydroxyimino cephem (**9**v).

In Scheme 1 (Method a), benzhydryl 3-hydroxymethyl-7-(2-thienylacetamido)-3-cephem-4-carboxylate (2a) or 7-formamido-3-hydroxymethyl cephem (2b) was synthesized by acylation at the C-7 position of 7-ACA with (2-thienyl)acetyl chloride or formic acid-acetic anhydride, hydrolysis of acetoxy substituent at the C-3 position with bran-enzyme and esterification of the C-4 carboxylic acid with diphenyldiazomethane, following the procedure reported in a previous paper¹⁰). The hydroxymethyl group was converted with

Scheme 1.

1509

N,N'-carbonyldiimidazole to activated ester (3a, 3b) and was successively reacted with various amines to afford substituted carbamoyloxymethyl cephems (4g~4o). As the double bond of the cephem nucleus was isomerized from Δ^3 to Δ^2 in the course of the reactions, these mixtures (4g~4o) were oxidized with *m*-chloroperoxybenzoic acid and treated with phosphorus trichloride to provide the desired Δ^3 derivatives (6g~6o).

Scheme 2 (Method b) illustrates another procedure for preparing 3-monosubstituted carbamoyloxymethyl cephems ($4d \sim 4f$). The hydroxymethyl group of 2a was acylated with several alkylisocyanates in the presence of triethylamine. The double bond of the cephem was again partially isomerized to Δ^2 , so the mixture was converted through the oxidation-reduction sequence described above to afford benzhydryl 7-formamido-3-monosubstituted carbamoyloxymethyl-3-cephem-4-carboxylate ($6d \sim 6f$).

As shown in Scheme 3, the 7-protected carbamoyloxy cephems $(6d \sim 6o)$, which were prepared in Scheme 1 and Scheme 2, were transformed to aminothiazolyloxyimino cephem acids $(9d \sim 9t)$ and their prodrugs $(10c \sim 10t, 11a \sim 11j)$ in several steps. First, the 7-acyl side chains of $6d \sim 6o$ were cleaved to give 7-amino-cephems. The thienylacetamido moiety of 6i, 6j, 6o was removed by the PCl₅ imino-chloride

method. On the other hand, the formamido group of 6 was cleaved by 12 M hydrochloric acid in methanol to yield 7-amino-3-substituted carbamoyl cephems ($7d \sim 7o$). Second, 7-amino cephems ($7d \sim 7o$) were coupled with (Z)-2-(2-tritylaminothiazol-4-yl)-trityloxyimino acid (15)¹²) or alkoxyiminoacetic acids such as (16) and (17)¹³) in the presence of 1-hydroxybenztriazole and N,N'-dicyclohexylcarbodiimide to give the acylated compounds ($8d \sim 8t$). Third, protected aminothiazolyl cephems ($8d \sim 8t$) were treated with trifluoroacetic acid and anisole, successively treated with formic acid in the case of trityl-protected hydroxyimino or alkoxyimino acetamido]-3-substituted carbamoyloxymethyl-3-cephem-4-carboxylic acids ($9d \sim 9t$). Finally, these sodium salts ($9d \sim 9t$) were esterified with appropriate iodo or bromo ester reagents (I or Br-R₅) in N,N-dimethylformamide to give the corresponding prodrug-type esters ($10c \sim 10t, 11a \sim 11j$).

Scheme 4 depicts the route for *N*-methylpiperazine derivative (**8p**). This compound couldn't be obtained by the Method a, because the double bond of the cephem nucleus of the intermediates was found to be isomerized due to the basicity of *N*-methylpiperazine. In order to avoid this annoying isomerization, the 3-hydroxymethyl cephem sulfoxide (**13**) was chosen as the starting material and converted to benzhydryl 7-formamido-3-(4-methylpiperazinyl)carbonyloxymethyl-3-cephem-4-carboxylate-1-oxide (**5p**) by a similar method (Method a) to that described in Scheme 1. Cephem oxide (**5p**) was transformed through acyl cleavage and acylation at the C-7 side chain to protected thiazolyl cephem (**8p**), which was converted by reduction with PCl₃, deprotection with trifluoroacetic acid-anisole and formic acid and purification to 3-(4-methylpiperazinyl)carbonyloxymethyl-3-cephem (**9p**).

Scheme 5 illustrates the synthetic route for the *anti* counterpart of E1100. The protected compound (8u) was treated with 12 M hydrochloric acid in acetonitrile to afford the mixture of the isomerized (*E*)-hydroxyimino compound (8v) and the (*Z*) isomer (8u). The isolated (*E*)-isomer by chromatography was converted through deprotection and purification by a similar manner to that described in Scheme 3 to 7-[(*E*)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephem (9v).

Antibacterial Activity and Oral Absorption

The *in vitro* antibacterial activity of the new cephalosporins $(9c \sim v)$ against selected Gram-positive and Gram-negative bacteria is shown in Table 1 compared with that of CCL, cefpodoxime (CPDX), and CFDN. Table 2 shows that the urinary recovery (%) after oral administration of their pivaloyloxymethyl (POM) esters ($10c \sim 10s$) (20 mg/kg as the parent compound) to mice and the relative bioavailability (%) calculated according to the following equation.

Relative Bioavailability (BA%) =
$$\frac{(\text{Urinary recovery (\%) after po dosage})}{(\text{Urinary recovery (\%) after iv dosage})} \times 100$$

Most of the new tested compounds showed potent activity against Gram-positive and Gram-negative bacteria including β -lactamase producing strains except for *P. aeruginosa* PAO1. In general, the antibacterial activities of hydroxyimino derivatives ($9c \sim 9p$) against Gram-positive bacteria especially *S. aureus* were higher than those of methoxy and other alkoxy derivatives ($9q \sim 9t$). The hydroxyimino cephems ($9c \sim 9p$) exhibited as potent against *S. aureus* as CFDN, and more potent than CPDX, while they showed more potent against Gram-negative bacteria than both CFDN and CPDX.

In the series of hydroxyimino derivatives, the modification with a more lipophilic substituent at the C-3 position of the nucleus resulted in slight reduction in activity but still maintenance in strong potency

		N-C		NR2R3		
		·`````````````````````````````````````				
Compound	9c	9d	9e	9f	9g	9h
R ₄	н	Н	Н	Н	Ĥ	Н
R ₂	н	Н	Н	н	Н	Н
R ₃	Н	CH3	C_2H_5	$CH(CH_3)_2$	CH_2CH_2F	CH_2CF_3
S. aureus 209P	0.1	0.1	0.1	0.2	0.2	0.4
S. aureus JS1 (MRSA)	1.56	1.56	1.56	1.56	1.56	6.25
S. pneumoniae E33023	0.1	0.05		0.05	0.05	0.05
E. feacalis E22018	25	12.5	12.5	12.5	6.25	12.5
E. coli NIHJ JC-2	0.05	0.025	0.05	0.1	0.05	0.1
K. pneumoniae IID875	0.025	0.025	0.05	0.05	0.05	0.1
M. morganii E06071 ^a	1.56	0.4	0.2	0.2	1.56	3.13
C. freundii GN346ª	0.2	0.2	0.2	0.2	0.8	0.8
E. cloacae GN7471 ^a	3.13	6.25	1.56	3.13	3.13	6.25
S. marcescens IID620	0.05	0.05	0.05	0.05	0.1	0.1
H. influenzae IID1638	0.4	0.2	0.1	0.05	0.2	0.4
P. aeruginosa PA01	>100	>100	>100	>100	>100	>100
Compound	9i	9j	9k	91	9m	9n
R ₄	Н	Н	Н	Н	Н	Η
R ₂	CH ₃	CH ₃	CH ₃		\sim	, <u> </u>
R ₃	CH ₃	C_2H_5	CH ₂ CH ₂ OH	\sim	"√	^∕
S. aureus 209P	0.1	0.2	0.1	0.2	0.1	0.2
S. aureus JS1 (MRSA)	1.56	3.13	1.56	1.56	1.56	3.13
S. pneumoniae E33023	0.1	0.1	0.1	0.1	0.1	0.05
E. feacalis E22018	100	50	100	50	25	50
E. coli NIHJ JC-2	0.1	0.4	0.05	0.1	0.4	1.56
K. pneumoniae IID875	0.05	0.2	0.05	0.1	0.2	0.8
M. morganii E06071 ^a	0.8		0.8	0.8	0.8	1.56
C. freundii GN346ª	0.2	0.8	0.4	0.4	0.8	1.56
E. cloacae GN7471ª	1.56	3.13	3.13	3.13	3.13	3.13
S. marcescens IID620	0.05	0.2	0.05	0.05	0.1	0.8
H. influenzae IID1638	0.1	0.05	0.1	0.1	0.1	0.1
D . D						

Table 1. In vitro antibacterial of 3-substituted carbamoyloxymethyl cephems ($9c \sim v$).

against most members of the Enterobacteriaceae. Like **9p**, which was acylated with a basic amine such as *N*-methylpiperazine, the introduction of basic amines at the C-3 position led to significant reduction in potency against both Gram-positive bacteria and Gram-negative bacteria. Therefore, the modification of the carbamoyloxy substituent seemed to be rather disappointing with respect to *in vitro* antibacterial activities. However, as for the activity against *H. influenzae*, which is a very important pathogen in respiratory tract infection, the disubstituted analogues (**9i**~**9o**) generally were more potent than monosubstituted (**9d**~**9h**) and non-substituted (**9c**)¹³⁾ carbamoyloxymethyl cephems. Among methyl derivatives such as non-substituted (**9c**), monomethyl (**9d**) and dimethyl derivatives (**9i**), this tendency was confirmed in the activity against clinical isolates of *H. influenzae*, which is depicted in Fig. 4. Therefore, dimethyl cephem (**9i**) was regarded as one of the most well-balanced compounds.

Fluoromethoxyimino cephem (9t) showed very similar activity to methoxyimino cephem (9s), in spite of the report¹⁷⁾ that fluoromethoxyimino derivatives are more potent than their counterparts of methoxyimino derivatives. The *anti*-hydroxyimino isomer (9u) was found to be less active than 9i, which

Table 1. (Continued)							
Compound	90	9p					
R ₄	Н	н					
R ₂			Cefaclor	Cefdinir	Cefpodoxime		
R ₃	N_O	N_NCH3					
S. aureus 209P	0.4	0.2	0.4	0.1	1.56		
S. aureus JS1 (MRSA)	1.56	3.13	50	3.13	50		
S. pneumoniae IID552	0.1	0.2	0.4	0.1	0.05		
E. feacalis E22018	50	12.5	50	12.5	100		
E. coli NIHJ JC-2	0.2	0.05	1.56	0.4	0.4		
K. pneumoniae IID875	0.1	0.05	0.8	0.2	0.05		
M. morganii E06071 ^a	3.13	1.56	>100	>100	100		
C. freundii GN346 ^a	1.56	0.8	25	12.5	25		
E. cloacae GN7471 ^a	6.25	12.5	100	>100	>100		
S. marcescens IID620	0.1	0.4	50	6.25	0.1		
H. influenzae IID1638	0.1	0.8	1.56	0.4	0.1		
P. aeruginosa PA01	>100	>100	>100	>100	>100		
Compound	9q	9r	9s	9t	9v		
Compound R ₄	9q CH ₃	9r CH ₃	9s CH ₃	9t CH ₂ F	9v H (Anti)		
Compound R ₄ R ₂	9q CH ₃ H	9r CH ₃ H	9s CH ₃ CH ₃	9t CH ₂ F CH ₃	9v H (Anti) CH ₃		
Compound R_4 R_2 R_3	9q CH ₃ H H	9r CH ₃ H CH ₃	9s CH ₃ CH ₃ CH ₃	9t CH ₂ F CH ₃ CH ₃	9v H (Anti) CH ₃ CH ₃		
Compound R ₄ R ₂ R ₃ S. aureus 209P	9q CH ₃ H H 1.56	9r CH ₃ H CH ₃ 0.8	9s CH ₃ CH ₃ CH ₃ 0.8	9t CH ₂ F CH ₃ CH ₃ 0.8	9 v H (Anti) CH ₃ CH ₃ 3.13		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA)	9q CH ₃ H H 1.56 0.8	9r CH ₃ H CH ₃ 0.8 6.25	9s CH ₃ CH ₃ CH ₃ 0.8 3.13	9t CH ₂ F CH ₃ CH ₃ 0.8 3.13	9v H (Anti) CH ₃ CH ₃ 3.13 25		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552	9q CH ₃ H H 1.56 0.8 0.025	9r CH ₃ H CH ₃ 0.8 6.25 0.025	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012	9t CH ₂ F CH ₃ CH ₃ 0.8 3.13 0.025	9v H (Anti) CH ₃ CH ₃ 3.13 25 6.25		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018	9q CH ₃ H H 1.56 0.8 0.025	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100	9t CH ₂ F CH ₃ CH ₃ 0.8 3.13 0.025 >100	9v H (Anti) CH3 CH3 CH3 3.13 25 6.25 >100		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2	9q CH ₃ H H 1.56 0.8 0.025 0.05	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2	9t CH ₂ F CH ₃ CH ₃ 0.8 3.13 0.025 >100 0.2	9v H (Anti) CH ₃ CH ₃ 3.13 25 6.25 > 100 3.13		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2 0.1	9t CH₂F CH₃ CH₃ 0.8 3.13 0.025 >100 0.2 0.2	9v H (Anti) CH3 CH3 CH3 3.13 25 6.25 >100 3.13 1.56		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875 M. morganii E06071 ^a	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012 1.56	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025 0.8	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2 0.1 0.8	9t CH ₂ F CH ₃ CH ₃ 0.8 3.13 0.025 >100 0.2 0.2 3.13	9v H (Anti) CH3 CH3 CH3 3.13 25 6.25 > 100 3.13 1.56 6.25		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875 M. morganii E06071 ^a C. freundii GN346 ^a	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012 1.56 0.4	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025 0.8 0.4	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2 0.1 0.8 0.8 0.8	$9t$ $CH_{2}F$ CH_{3} CH_{3} 0.8 3.13 0.025 >100 0.2 0.2 3.13 1.56	$\begin{array}{c} 9v \\ H (Anti) \\ CH_3 \\ CH_3 \\ \hline 3.13 \\ 25 \\ 6.25 \\ > 100 \\ 3.13 \\ 1.56 \\ 6.25 \\ 6.25 \\ 6.25 \\ \hline \end{array}$		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875 M. morganii E06071 ^a C. freundii GN346 ^a E. cloacae GN7471 ^a	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012 1.56 0.4 6.25	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025 0.8 0.4 3.13	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2 0.1 0.8 0.8 3.13	$\begin{array}{c} 9t \\ CH_2F \\ CH_3 \\ CH_3 \\ \end{array}$ $\begin{array}{c} 0.8 \\ 3.13 \\ 0.025 \\ >100 \\ 0.2 \\ 0.2 \\ 3.13 \\ 1.56 \\ 3.13 \end{array}$	9v H (Anti) CH ₃ CH ₃ 3.13 25 6.25 >100 3.13 1.56 6.25 6.25 6.25 25		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875 M. morganii E06071 ^a C. freundii GN346 ^a E. cloacae GN7471 ^a S. marcescens IID620	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012 1.56 0.4 6.25 0.012	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025 0.8 0.4 3.13 0.006	9s CH ₃ CH ₃ CH ₃ 0.8 3.13 0.012 >100 0.2 0.1 0.8 0.8 3.13 0.025	9t CH₂F CH₃ CH₃ 0.8 3.13 0.025 >100 0.2 0.2 3.13 1.56 3.13 0.025	9v H (Anti) CH ₃ CH ₃ 3.13 25 6.25 > 100 3.13 1.56 6.25 6.25 6.25 25 0.8		
Compound R ₄ R ₂ R ₃ S. aureus 209P S. aureus JS1 (MRSA) S. pneumoniae IID552 E. feacalis E22018 E. coli NIHJ JC-2 K. pneumoniae IID 875 M. morganii E06071 ^a C. freundii GN346 ^a E. cloacae GN7471 ^a S. marcescens IID620 H. influenzae IID1638	9q CH ₃ H H 1.56 0.8 0.025 0.05 0.012 1.56 0.4 6.25 0.012 0.025	9r CH ₃ H CH ₃ 0.8 6.25 0.025 100 0.1 0.025 0.8 0.4 3.13 0.006 0.025	$\begin{array}{c} 9s \\ CH_3 \\ CH_3 \\ CH_3 \\ 0.8 \\ 3.13 \\ 0.012 \\ > 100 \\ 0.2 \\ 0.1 \\ 0.8 \\ 0.8 \\ 3.13 \\ 0.025 \\ 0.012 \end{array}$	$\begin{array}{c} 9t\\ CH_2F\\ CH_3\\ CH_3\\ 0.8\\ 3.13\\ 0.025\\ >100\\ 0.2\\ 0.2\\ 3.13\\ 1.56\\ 3.13\\ 0.025\\ 0.012\\ \end{array}$	9v H (Anti) CH ₃ CH ₃ 3.13 25 6.25 > 100 3.13 1.56 6.25 6.25 25 0.8 6.25		

^a High cephalosporinase producing strain.

Table 2.	Urinary	recovery	(U.R.) a	and	bioavailability
(B.A.)	after oral	administ	ration of	thei	r pivaloyloxy-
methyl	(POM) es	ters to mi	ce (20 mg	;/kg)	

Compound	R4	R ₂ , R ₃	U.R. (%) (po)	B.A. (%)
10c	Н	Н, Н	11	17
10d		H, CH ₃	6	9
10i		CH ₃ , CH ₃	18	36
10j		CH_3 , CH_2CH_3	20	39
10k		CH_3 , CH_2CH_2OH	2	3
101		N	9	23
10m		N	3	7
10n		N	6	26
100		NO	7	15
10q	CH_3	Н, Н	10	18
10r		H, CH ₃	15	19
10s		CH ₃ , CH ₃	20	34
10t	CH ₂ F	CH ₃ , CH ₃	10	23

Fig. 4. Antibacterial activity of carbamoyloxymethyl cephems (9c, 9d, 9i) against clinical isolates of *H. influenzae* (20 strains).

$H_2N \xrightarrow{K_3}_{N-OH} CONH \xrightarrow{K_3}_{OC} N_{CH_3}$									
		U.R.		ED ₅₀	mg/kg				
Compound	R ₅	(%) (po)	B.A. (%)	S. aureus E312908ª	<i>E. coli</i> E01125ª				
9i	Na	3	6		<u></u>				
11a	O CH(CH₃)OCCH₃	6	12	22.2	0.57				
10i	$CH_2OCC(CH_3)_3$	18	36	9	0.58				
11b	CH ₂ OCCH(C ₂ H ₅) ₂	24	48	10.8	0.58				
11c	O CH(CH ₃)OCCH(CH ₃) ₂	19	38						
11d	$O_{\mathbb{Z}}$ CH(CH ₃)OCCH(C ₂ H ₅) ₂	19	38						
11e	CH(CH ₃)OCCH ₂ C(CH ₃) ₃	13	26						
11f	CH(CH ₃)OCOC ₂ H ₅	9	18	19.1	0.57				
11g	O □ CH₂OCOCH(CH₃)₂	7	14						
11h (E1101)	CH(CH ₃)OCOCH(CH ₃) ₂	22	44	10.1	0.33				
11i	$\underset{\text{CH(CH_3)OCOc}-C_6\text{H}_{11}}{\overset{\parallel}{\text{OCOc}}}$	22	44	23.5	0.95				
11j		2	4						

Table 3. Urinary recovery (U.R.) and bioavailability (B.A.) in mice (20 mg/kg, n = 5) and protective effects (ED_{50}) against systemic infection in mice (n = 8) after oral administration of various prodrugs of **9i**.

c

^a MICs of 9i are 0.8 µg/ml against S. aureus E31290 and 0.05 µg/ml against E. coli E01125.

means that the (Z)-configuration of oxyimino substituent is very important for potent antibacterial activity.

As shown in Table 2, the POM esters ($10c \sim 10s$) showed modest and good bioavailability. Among the derivatives, *N*,*N*-dimethyl (10i, 10s) and *N*-ethyl-*N*-methyl cephems (10j) showed good urinary recovery. In general, *N*,*N*-disubstituted carbamoyloxy cephems esters showed better bioavailability than non-substituted (10c, 10q) and mono-substituted esters (10d, 10r), except for pyrrolidine cephem (10m), *N*-hydroxyethyl-*N*-methyl (10k) and morpholine (10o). The reason why the latter two derivatives exhibited poor oral absorbability was considered to be due to their polar substituents. It is interesting that both *N*,*N*-dimethyl derivatives (10i, 10s) of the series of the hydroxyimino cephems and the methoxyimino cephems exhibited good oral absorbability, which prompted us to conclude that *N*,*N*-dimethylcabmoyloxymethyl group at the C-3 position worked as the key substituents for good oral absorption of cephem

prodrugs. However, fluoromethoxyimnio cephem (10t) showed less bioavailability. Therefore, it was difficult to anticipate the oral absoption of cephem prodrugs simply from their chemical structures.

Since hydroxyimino N,N-dimethylcarbamoyloxy cephem (10i) showed well-balanced antibacterial activity and good oral absorbability, a series of other prodrug esters were synthesized and evaluated. Table 3 shows the bioavailability of various types of prodrug esters (11b~11j). Among the series of N,N-dimethylcarbamoyloxy cephems (10i, $11a \sim 11j$), the POM ester (10i), 2-ethylbutyryloxymethyl ester (11b), 1-(isopropoxycarbonyloxy)ethyl ester (11h) and 1-(cyclohexyloxycarbonyloxy)ethyl esters (11i) exhibited good bioavailability. On the other hand, less lipophilic esters like 11a, 11f, 11g, 11j showed poor bioavailability. These results mean that the lipophilicity of the prodrugs deeply affected their oral absorbability. Consequently, as shown in Table 3, the modification of cephem carboxylic acid (9i) to prodrug type esters such as 11b, 11h, 11i resulted in about 7-fold increase in oral absorbability, while 9i showed only 6% bioavailability after oral administration.

Since some N,N-dimethylcarbamoyloxy cephems exhibited good oral absorbability, several prodrugs (10i and 11a, 11b, 11f, 11h, 11i) were evaluated further for their *in vivo* activity. As shown in Table 3, the POM ester (10i) and the 1-(isopropoxycarbonyloxy)ethyl ester (11h) were found to be effective against S. *aureus* E31290 and E. *coli* E01125. It is still not clear why the cyclohexyl compound (11i) was not effective in vivo, even though 11i showed good oral absorbability. Now, we assume that this discrepancy happened due to the difference in absorption between non-infected mice and infected mice.

In summary, N,N-dimethylcarbamoyloxy cephem (9i, E1100) showed potent and well-balanced antibacterial activity and its prodrug esters exhibited good oral absorption and excellent *in vivo* efficacy. Considering the safety of the ester moiety, the 1-(isopropoxycarbonyloxy)ethyl prodrug (11h, E1101) was chosen as a candidate for further evaluation.

Experimental

¹H NMR spectra were recorded on a Varian UNITY 400 spectrometer. IR spectra were measured on a Hitachi 260-30 or a Nicolet 205 FT-IR spectrometer. Melting points were taken on a Yamato MP21.

Determination of Antibacterial Activities

All the *in vitro* antibacterial activities are given as MIC in μ g/ml required to prevent growth of bacterial culture. MICs were determined by the serial agar dilution method after incubation at 37°C for 18~20 hours with an inoculumn size of about 10⁶ cells/ml.

Oral Absorption Study

Male ICR-strain mice aged 4 weeks weighing $24 \sim 30$ g were used in groups of 4. The antibiotics were given to mice orally as a single dose of 20 mg/kg in a suspension of 0.5% CMC and intravenously at 20 mg/kg as a solution. Urine was collected over 6 hours after dosing.

Benzhydryl 7-(2-Thienylacetamido)-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate-1oxide (5i) (Method a)

To a solution of benzhydryl 7-(2-thienylacetamido)-3-hydroxymethyl-3-cephem-4-carboxylate¹⁰⁾ (1a; 30 g, 0.058 mol) in tetrahydrofuran (600 ml) was added N,N'-carbonyldiimidazole (11.25 g, 0.069 mol) under ice cooling, and the mixture was stirred at the same temperature for 3 hours. The mixture was diluted with ethyl acetate (1 liter), and the organic layer was washed with water (0.4 liter). To the extract was added a solution of 50% aqueous dimethylamine (12 g, 0.075 mol) under ice cooling, and the reaction mixture was stirred for 1 hour. The mixture was washed with brine, dried over anhydrous MgSO₄ and concentrated

under reduced pressure to give a mixture of benzhydryl 7-(2-thienylacetamido)-3-*N*,*N*-dimethylcarbamoyl-oxymethyl-3-cephem-4-carboxylate and benzhydryl 7-(2-thienylacetamido)-3-*N*,*N*-dimethylcarbamoyloxy-methyl-2-cephem-4-carboxylate (24 g).

To a solution of the compounds obtained above in tetrahydrofuran (400 ml) under ice cooling was added a solution of *m*-chloroperoxybenzoic acid (20 g, 0.116 mol) in tetrahydrofuran (100 ml), and the mixture was stirred at the same temperature for 30 minutes. The mixture was concentrated under reduced pressure, and the residue was washed with ethyl ether. The residue was purified by silica gel column chromatography (eluent; *n*-hexane-ethyl acetate, 3:1). The fractions containing the desired compound were collected and evaporated under reduced pressure to give 7.5 g of **5i** (21%). MP 174~176°C (dec), ¹H NMR (CDCl₃) δ 2.84 (3H, s), 2.92 (3H, s), 3.23 and 3.88 (2H, ABq, J=18 Hz), 3.88 (2H, s), 4.48 (2H, d, J=4 Hz), 4.78 and 5.34 (2H, ABq, J=8 Hz), 6.15 (1H, dd, J=4, 8 Hz), 6.90~7.10 (2H, m), 6.97 (1H, s), 7.20~7.60 (11H, m).

Benzhydryl 7-(2-Thienylacetamido)-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate (6i) To a solution of 5i (5g, 8.2 mmol) in N,N-dimethylformamide (50 ml) under ice cooling was added phosphorus trichloride (2.5g, 18 mmol), and the mixture was stirred at the same temperature for 30 minutes. The reaction mixture was diluted with ethyl acetate (500 ml), and the organic layer was washed with water and then with brine, and dried over anhydrous MgSO₄. The filtrate was concentrated under reduced pressure, and to the residue was added a solution of acetone - diisopropyl ether, and the precipitate was collected by filtration to give 3.8g of 6i (79%). MP 62~68°C (dec), ¹H NMR (CDCl₃) δ 2.82 (3H, s), 2.90 (3H, s), 3.40 and 3.55 (2H, ABq, J=18 Hz), 3.84 (2H, s), 4.81 and 5.06 (1H, ABq, J=12 Hz), 4.98 (1H, d, J=4 Hz), 5.84 (1H, dd, J=4, 8 Hz), 6.27 (1H, d, J=8 Hz), 6.94 (1H, s), 6.98~7.02 (2H, m), 7.25~7.43 (11H, m).

Preparation of 6k, 60 was carried out by a method similar to that described for 6i.

Benzhydryl 7-Amino-3-*N*,*N*-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate hydrochloride (7i) To a solution of phosphorous pentachloride (2.8 g, 13 mmol) and pyridine (1.04 g, 13 mmol) in dichloromethane (80 ml) at -10° C was added **6i** (1.6 g, 2.7 mmol), and the mixture was stirred at the same temperature for 1 hour. 1,3-Propanediol (1 ml) was added to the reaction mixture at -20° C. After stirring for 1 hour, methanol (10 ml) was added to the mixture and the resulting mixture was heated to room temperature. The mixture was diluted with water (50 ml), and the organic layer was washed with water and dried over anhydrous MgSO₄. The extract was evaporated *in vacuo*, and the residue was crystallized from ethyl ether and diisopropyl ether to give 1.0 g of **7i** (74%). MP 140~143°C (dec), ¹H NMR (CDCl₃) δ 2.83 (3H, s), 2.90 (3H, s), 3.43 and 3.58 (2H, ABq, J=18 Hz), 4.80 and 5.06 (2H, ABq, J=12 Hz), 4.80~5.00 (1H, m), 4.97 (1H, d, J=4 Hz), 6.98 (1H, s), 7.25~7.50 (10H, m).

Benzhydryl 7-[(Z)-2-(2-Tritylaminothiazol-4-yl)-2-trityloxyiminoacetamido]-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate (**8**i)

To a solution of (Z)-2-(2-tritylaminothiazol-4-yl)-2-trityloxyiminoacetic acid (15; 1.9 g, 2.8 mmol) and 1-hydroxybenztriazole (0.4 g, 2.9 mmol) in *N*,*N*-dimethylformamide (20 ml), *N*,*N'*-dicyclohexylcarbodiimide (0.6 g, 2.9 mmol) was added and the mixture was stirred for 30 minutes. To the resulting mixture were added 7i (1.3 g, 2.8 mmol) and triethylamine (2.8 g, 2.8 mmol), and the mixture was stirred for 3 hours. The mixture was diluted with ethyl acetate (300 ml). After being filtered off, the filtrate was washed with water and brine, and dried over anhydrous MgSO₄. The filtrate was evaporated under reduced pressure, and the residue was chromatographed on a column of silica gel (Wako C-200, 50 g). The column was eluted with *n*-hexane - ethyl acetate (2:1). The fractions containing the desired product were collected and evaporated. The residue was solidified with diisopropyl ether to give 1.4 g of **8i** as an amorphous powder (45%).

Preparation of **8k**, **8o** was carried out by a method similar to that described for **8i**. The spectral data for **8i**, **8k**, **8o** are listed in Table 4.

Benzhydryl 7-Formamido-3-hydroxymethyl-3-cephem-4-carboxylate $(1b)^{10}$ A mixture of 99% formic acid (17 g, 370 mmol) and acetic anhydride (7.5 g, 73.5 mmol) was stirred

Table 4. Spectral data of protected cephems $8d \sim t$.

ompound	¹ H NMR (δ)	Solvent ^a
8d	2.73 (1.5H, s), 2.75 (1.5H, s), 3.39, 3.49 (2H, ABq, $J=19$ Hz), 4.40~4.48 (1H, m), 4.75, 5.04 (2H, ABq, $J=14$ Hz), 5.04 (1H, d, $J=5$ Hz), 6.10 (1H, dd, $J=9$, 5 Hz), 6.43 (1H, s), 6.97 (1H, s), 7.18~7.48 (42H, m)	A
8e	0.97 (111, 5), 71.0 (1211, 10) 0.98 (3H, t, $J = 6$ Hz), 2.97 (2H, m), 3.40~3.70 (2H, m), 4.62, 4.81 (2H, ABq, $J = 14$ Hz), 5.24 (1H, d, $J = 5$ Hz), 5.92 (1H, dd, $J = 5$, 9 Hz), 6.59 (1H, s), 6.93 (1H, s), 7.10~7.80 (404 m) $^{\circ}$ 7.8 (1H, c) 9.88 (1H, d, $J = -9$ Hz)	В
8f	(401, iii), 8.76 (1H, 5), 9.66 (1H, d, $J = 912$) 0.91 (3H, t, $J = 7$ Hz), 1.42~1.58 (2H, m), 3.09 (2H, q, $J = 7$ Hz), 3.24, 3.49 (2H, ABq, $J = 19$ Hz), 4.50~4.58 (1H, m), 4.76, 5.03 (2H, ABq, $J = 14$ Hz), 5.04 (1H, d, $J = 5$ Hz), 6.00 (1H, d, $J = 5$ SHz), 6.42 (1H, z), 6.06 (1H, z), 7.10, 7.50 (41H, m)	А
8g	$3.18, 3.37$ (2H, ABq, $J = 18$ Hz), 3.10×3.40 (2H, m), 4.20×4.40 (2H, m), $4.70, 4.99$ (2H, ABq, $J = 14$ Hz), 4.92 (1H, d, $J = 5$ Hz), 6.04 (1H, dd, $J = 5, 9$ Hz), 6.44 (1H, s), 6.84 (1H, s), 6.92 (1H, s), 7.10×7.50 (4H m)	А
8h	5), 0.55 (11, 5), 7.10×7.50 (11, m) 3.05, 3.33 (2H, ABq, $J = 19$ Hz), 3.50×3.65 (2H, m), 4.72, 5.01 (2H, ABq, $J = 14$ Hz), 4.91 (1H, d, $J = 5$ Hz), 6.03 (1H, dd, $J = 5$, 8 Hz), 6.45 (1H, s), 6.83 (1H, s), 6.95 (1H, s), 7.12 \times 7.47 (4H, m)	Α
8i	2.82 (3H, s), 2.91 (3H, s), 3.36, 3.48 (2H, ABq, $J=18$ Hz), 4.81, 5.14 (2H, ABq, $J=12$ Hz), 5.05 (1H, d, $J=4$ Hz), 6.08 (1H, dd, $J=4$, 8 Hz), 6.43 (1H, s), 6.80 (1H, s), 6.97 (1H, c), 7.18, 7.50 (42H, m)	Α
8k	(1H, s), 7.18 ~ 7.30 (42H, m) 2.94 ~ 2.97 (3H, m), 3.24 ~ 3.30 (2H, m), $3.43 ~ 3.52$ (2H, m), $4.80 ~ 4.83$ (1H, m), 5.06 (1H, d, $J = 5$ Hz), 5.10 ~ 5.15 (1H, m), 6.11 (1H, dd, $J = 5$, 9 Hz), 6.44 (1H, s), 6.96 (1H, 0.720 - 7.40 (42H, m))	А
8j	s), $7.20 \approx 7.40$ (42H, m) $1.10 \approx 1.20$ (3H, m), 2.79 (1.5H, s), 2.87 (1.5H, s), $3.18 \approx 3.35$ (3H, m), 3.48, 3.48 (1H, ABq, $J=18$ Hz), 4.82 (1H, d, $J=12$ Hz), 5.06 (1H, d, $J=5$ Hz), 5.07 ≈ 5.15 (1H, m), 6.07 (1H, dd, $J=5$, 8Hz), 6.43 (1H, s), 6.83 (1H, s), 6.95 (1H, s), $7.10 \approx 7.40$ (40H, m), 7.47	Α
81	(1H, d, $J=8$ Hz) 2.15~2.27 (2H, m), 3.26, 3.50 (2H, ABq, $J=19$ Hz), 3.85~4.10 (4H, m), 4.82, 5.08 (2H, ABq, $J=14$ Hz), 5.05 (1H, d, $J=5$ Hz), 6.11 (1H, dd, $J=5$, 9 Hz), 6.47 (1H, s), 6.99 (1H, c), 7.15, 7.53 (42H, m)	A
8m	s), $7.15 \sim 7.55$ (4211, m) $1.80 \sim 1.90$ (4H, m), $3.20 \sim 3.40$ (4H, m), 3.29 , 3.50 (2H, ABq, $J = 14$ Hz), 5.07 (1H, d, $I = 5$ Hz) 6.09 (1H, dd $J = 5.9$ Hz) 6.43 (1H, s) 6.96 (1H, s) $7.15 \sim 7.50$ (42H, m)	Α
8n	$1.42 \sim 1.64$ (6H, m), $3.25 \sim 3.43$ (4H, m), 3.26 , 3.48 (2H, ABq, $J = 19$ Hz), 4.82 , 5.12 (2H, ABq, $J = 14$ Hz), 5.05 (1H, d, $J = 5$ Hz), $6.05 \sim 6.12$ (1H, m), 6.44 (1H, s), 6.96 (1H, s), $7.15 \sim 7.43$ (4H m)	A
80	3.26, 3.50 (2H, ABq, $J=19$ Hz), 3.30~3.70 (8H, m), 4.82, 5.11 (2H, ABq, $J=13$ Hz), 5.05 (1H, d, $J=5$ Hz), 6.20 (1H, dd, $J=5$, 8 Hz), 6.44 (1H, s), 6.85 (1H, br s), 6.96 (1H, b), 7.15~7.50 (4H m)	Α
8p	3), 1.10-7 (30 (411, iii) 2.08 (3H, s), 2.30 \sim 2.90 (4H, m), 3.26, 3.51 (2H, ABq, $J=18$ Hz), 3.40 \sim 3.80 (4H, m), 4.82, 5.04 (2H, ABq, $J=12$ Hz), 5.03 (1H, d, $J=5$ Hz), 6.09 (1H, dd, $J=5$, 10 Hz), 6.45 (1H s), 7.10 \sim 7.50 (42H m)	А
8r	(11, 3), 0.50 (11, 3), 710 (71.00 (4211, m)) 2.74 (1.5H, s), 2.75 (1.5H, s), 3.39, 3.56 (2H, ABq, $J=19$ Hz), 4.07 (3H, s), 4.45~4.53 (1H, m), 4.77, 5.04 (2H, ABq, $J=14$ Hz), 5.04 (1H, d, $J=5$ Hz), 5.95 (1H, dd, $J=5$, 9 Hz), 6.73 (1H, s), 6.88 (1H, d, $J=9$ Hz), 6.95 (1H, s), 7.03 (1H, s), 7.24~7.44 (25H, m)	A
8s	2.83 (3H, s), 2.89 (3H, s), 3.36, 3.50 (2H, ABq, $J=19$ Hz), 4.04 (3H, s), 4.84, 5.10 (2H, ABq, $J=14$ Hz), 5.04 (1H, d, $J=5$ Hz), 5.92 ~ 5.96 (1H, m), 6.76 (1H, s), 6.94 (1H, s), 7.20 ~ 7.45 (25H, m)	А
8t	2.82 (3H, s), 2.86 (3H, s), 3.42, 3.56 (2H, ABq, $J=19$ Hz), 4.82, 5.09 (2H, ABq, $J=14$ Hz), 5.05 (1H, d, $J=5$ Hz), 5.72, 5.86 (2H, ABq, d, $J=4$, 55 Hz), 5.94 (1H, dd, $J=5$, 8 Hz), 6.81 (1H, s), 6.93 (1H, s), 7.03 (1H, d, $J=8$ Hz), 7.28 ~ 7.45 (25H, m)	Α

^a A; CDCl₃, B; d_6 -DMSO.

at 40°C for 30 minutes. To the reaction mixture was added 7-amino-3-acetoxymethyl-3-cephem-4-carboxylic acid (10 g, 37 mmol) in several portions at room temperature, and the mixture was stirred for 2 hours. The mixture was concentrated under reduced pressure, and the residue was dissolved in methanol (40 ml). To the mixture was added sodium acetate (4.5 g, 55 mmol), and the mixture was stirred for 20 minutes. To the resulting mixture was added diisopropyl ether (160 ml), and the crystals were collected on a filter and

washed with disopropyl ether to give 11 g of sodium 7-formamido-3-acetoxymethyl-3-cephem-4-carboxylate (93%).

To a solution of phosphate buffer (pH 6.5, 200 ml) were added sodium 7-formamido-3-acetoxymethyl-3-cephem-4-carboxylate (5 g, 15.5 mmol) and wheat bran (32 g), and the mixture was stirred for 18 hours. After being filtered off, a solution of diphenyldiazomethane (4 g, 55 mmol) in dichloromethane (8 ml) was added to the filtrate. The pH of the mixture was adjusted to 2.8 by adding of 1 M hydrochloric acid, and the mixture was stirred for 14 hours at 20°C. The organic layer was washed with water and then brine, and dried over anhydrous MgSO₄. The filtrate was evaporated to dryness, and the residue was crystallized from diisopropyl ether to give 1.15 g of 1b (16%). MP 150~152°C (dec), ¹H NMR (DMSO- d_6) δ 3.58 and 3.64 (2H, ABq, J = 18 Hz), 3.96 and 4.42 (2H, ABq, J = 13 Hz), 4.97 (1H, d, J = 5 Hz), 5.98 (1H, dd, J = 5, 8 Hz), 6.49 (1H, d, J = 8 Hz), 6.94 (1H, s), 7.20~7.50 (10H, m), 8.23 (1H, s).

Benzhydryl 7-Formamido-3-(1-piperidinyl)carbonyloxymethyl-3-cephem-4-carboxylate-1-oxide (5n) (Method a)

To a solution of 1b (4.24g, 10 mmol) in tetrahydrofuran (80 ml) under ice cooling was added N,N'-carbonyldiimidazole (1.62g, 10 mmol), and the mixture was stirred for 2 hours. To the reaction mixture, piperidine (1.02g, 12 mmol) was added and the mixture was stirred for 18 hours at the same temperature. The mixture was evaporated *in vacuo*, and the residue was dissolved in ethyl acetate (200 ml). The organic layer was washed with water and then with brine, and dried over anhydrous MgSO₄. The filtrate was concentrated under reduced pressure, and the residue was chromatographed on a column of silica gel (Wako C-200, 100 g). The column was eluted with *n*-hexane - ethyl acetate (2:1), and the fractions containing the desired product were collected and evaporated to give 2.3g of benzhydryl 7-formanido-3-(1-piperidinyl)carbonyloxymethyl-2-cephem-4-carboxylate as an amorphous powder (43%). MP 185~188°C (dec), ¹H NMR (CDCl₃) δ 1.20~1.40 (6H, m), 3.30~3.40 (4H, m), 4.57 and 4.66 (2H, ABq, J=13 Hz), 5.13 (1H, s), 5.22 (1H, d, J=4 Hz), 5.70~5.75 (1H, m), 6.44 (1H, s), 6.89 (1H, s), 7.25~7.40 (10H, m), 8.23 (1H, s)

To a solution of benzhydryl 7-formamido-3-(1-piperidinyl)carbonyloxymethyl-2-cephem-4-carboxylate (3.4 g, 6.3 mmol) in ethyl acetate (20 ml) was added *m*-chloroperoxybenzoic acid (1.53 g, 8.9 mmol) under ice cooling, and the mixture was stirred at the same temperature for 35 minutes. The reaction mixture was evaporated under reduced pressure, and the residue was chromatographed on a column of silica gel (Wako C-200, 100 g). The column was eluted with dichloromethane - ethyl acetate (4:1). The fractions containing the desired product were collected and evaporated. The residue was crystallized from diisopropyl ether to give 1.53 g of **5n** (44%). MP 185~188°C (dec), ¹H NMR (DMSO- d_6) δ 1.35~1.55 (6H, m), 3.23~3.30 (4H, m), 3.65 and 4.01 (2H, ABq, J=19 Hz), 4.58 and 5.11 (2H, ABq, J=14 Hz), 4.98 (1H, d, J=4 Hz), 6.05 (1H, m), 6.93 (1H, s), 7.25~7.55 (10H, m), 8.15 (1H, s), 8.43 (1H, d, J=9 Hz).

Benzhydryl 7-Formamido-3-(1-piperidinyl)carbonyloxymethyl-3-cephem-4-carboxylate (6n)

To a solution of **5n** (2.07 g, 3.9 mmol) in *N*,*N*-dimethylformamide (25 ml) at -20° C was added phosphorous trichloride (1 ml, 11 mmol), and the reaction mixture was stirred at the same temperature for 35 minutes. The mixture was diluted with ethyl acetate (300 ml), and organic layer was washed with water and then brine, and dried over anhydrous MgSO₄. The filtrate was evaporated under reduced pressure, and the residue was purified by chromatography on a silica gel (Wako C-200, 50 g; eluent; *n*-hexane-ethylacetate, 3:1). The fractions containing the desired compound were collected and evaporated. The residue was crystallized from diisopropyl ether to give 1.87 g of **6n** as crystals (93%). MP $130 \sim 132^{\circ}$ C (dec), ¹H NMR (CDCl₃) δ 1.35 \sim 1.55 (6H, m), 3.20 \sim 3.35 (4H, m), 3.35 and 3.46 (2H, ABq, J=19 Hz), 4.76 and 5.03 (2H, ABq, J=14 Hz), 4.90 (1H, d, J=4 Hz), 5.80 \sim 5.85 (1H, m), 6.86 (1H, s), 7.14 \sim 7.40 (10H, m), 7.84 (1H, d, J=9 Hz), 8.15 (1H, s).

Preparation of 6g, 6h, 6j, 6l, 6m was carried out by a method similar to that described for 6n.

Benzhydryl 7-[(Z)-2-(2-Tritylaminothiazol-4-yl)-2-trityloxyiminoacetamido]-3-(1-piperidinyl)carbonyloxymethyl-3-cephem-4-carboxylate (8n)

To a solution of 6n (1.87 g, 35 mmol) in tetrahydrofuran (10 ml) and methanol (10 ml) was added 12 m hydrochloric acid (3 ml, 36 mmol), and the mixture was stirred at room temperature for 2 hours. After

evaporation, the mixture was added to a solution of ethyl acetate and water. The organic layer was washed with water and then brine, and dried over anhydrous $MgSO_4$. After being distilled off, the crude product of 7-amino cephem (7n) was obtained.

To a solution of 15 (2.35 g, 3.5 mmol) and 1-hydroxybenztriazole (0.56 g, 4.1 mmol) in N,N-dimethylformamide (18 ml) was added N,N'-dicyclohexylcarbodiimide (0.79 g, 3.8 mmol), and the mixture was stirred for 1 hour. To the resulting mixture was added 7n (1.3 g, 2.8 mmol), and the mixture was stirred for 3 hours. The mixture was diluted with ethyl acetate (300 ml) and after the precipitate was filtered off, the filtrate was washed with water and then brine, and dried over anhydrous MgSO₄. The filtrate was evaporated under reduced pressure, and the residue was chromatographed on a column of silica gel (Wako C-200, 50 g). The column was eluted with *n*-hexane-ethyl acetate (2:1). The fractions containing the desired product were collected and evaporated. The residue was solidified from diisopropyl ether to give 1.4 g of 8n as an amorphous powder (34%).

Preparation of $8d \sim 8h$, 8j, 8l, 8m was carried out by a method similar to that described for 8n. The spectral data for $8d \sim 8h$, 8j, $8l \sim 8n$ are listed in Table 4.

Benzhydryl 7-Formamido-3-*N*-methylcarbamoyloxymethyl-3-cephem-4-carboxylate-1-oxide (5d) (Method b)

To a solution of **1b** (10 g, 24 mmol) in tetrahydrofuran (70 ml) were added methylisocyanate (13.9 ml, 240 mmol) and triethylamine (0.33 ml, 0.24 mmol), and the mixture was stirred at 50°C for 8 hours in a sealed bottle. The mixture was diluted with ethyl acetate (500 ml), and the organic layer was washed with water and then brine, and dried over anhydrous MgSO₄. The filtrate was evaporated and purified by column chromatography of silica gel (Wako C-200 200 g; eluent; dichloromethane - ethyl acetate, 2:1) and the fractions containing the desired product were collected and evaporated to give 9.34 g of benzhydryl 7-formamido-3-*N*-methylcarbamoyloxymethyl-2-cephem-4-carboxylate (38%). ¹H NMR (CDCl₃) δ 2.55 (1.5H, s), 2.56 (1.5H, s), 4.44 and 4.52 (2H, ABq, J=13 Hz), 5.06 (1H, s), 5.10 ~ 5.20 (1H, m), 5.13 (1H, d, J=4 Hz), 5.55 (1H, dd, J=4, 9 Hz), 6.33 (1H, s), 6.81 (1H, s), 7.20 ~ 7.28 (10H, m), 7.62 (1H, d, J=9 Hz), 8.10 (1H, s).

To a solution of the Δ^2 -cephem obtained above (9.3 g, 19.3 mmol) in a solution of ethyl acetate (100 ml) and tetrahydrofuran (50 ml) under ice cooling was added *m*-chloroperoxybenzoic acid (4.76 g, 19 mmol), and the mixutre was stirred for 30 minutes. To the mixutre was added ethyl ether (400 ml), and the precipitate was collected to give 5.9 g of **5d** (62%). MP 192~194°C (dec), ¹H NMR (CDCl₃) δ 2.68 (3H, s), 2.69 (3H, s), 3.21 and 3.83 (2H, ABq, J=18 Hz), 4.46 (1H, d, J=4 Hz), 4.43~4.55 (1H, m), 4.66 and 5.20 (2H, ABq, J=15 Hz), 6.09 (1H, dd, J=4, 9 Hz), 6.79 (1H, d, J=9 Hz), 6.90 (1H, s), 7.19~7.44 (10H, m), 8.02 (1H, s).

Benzhydryl 7-Formamido-3-N-methylcarabamoyloxymethyl-3-cephem-4-carboxylate (6d)

Preparation of **6d** was carried out by a method similiar to that described for **6n**. MP 174~175 °C (dec), ¹H NMR (CDCl₃) δ 2.74 (1.5H, s), 2.75 (1.5H, s), 3.41 and 3.56 (2H, ABq, J=19 Hz), 4.57~4.61 (1H, m), 4.79 and 5.04 (2H, ABq, J=15 Hz), 4.98 (1H, d, J=5 Hz), 5.93 (1H, dd, J=5, 9 Hz), 6.44 (1H, d, J=9 Hz), 6.95 (1H, s), 7.26~7.43 (10H, m), 8.24 (1H, s).

Preparation of $6e \sim 6f$ was carried out by a method similar to that described for 6d.

$\frac{\text{Sodium } 7-[(Z)-2-(2-\text{Aminothiazol-4-yl})-2-\text{hydroxyiminoacetamido}]-3-N,N-\text{dimethylcarbamoyloxy-methyl}-3-cephem-4-carboxylate (9i)}{}$

To a solution of anisole (2 ml) and trifluoroacetic acid (3 ml) under ice-cooling was added the compound **8i** (1.4 g, 1.3 mmol), and the mixture was stirred at room temperature for 1 hour. The solvent was evaporated *in vacuo* and the residue was triturated with diisopropyl ether (100 ml). The precipitate was collected by filtration and was added to a solution of 90% formic acid (10 ml). After being stirred at room temperature for 3 hours, the mixture was concentrated, and the residue was triturated with diisopropyl ether. The crystals were collected by filtration and mixed with sodium acetate (262 mg, 3.2 mmol) in methanol (10 ml). The mixture was evaporated to dryness, and the residue was triturated with 2-propanol. The precipitate was collected by filtration to give a crude product of **9i**. The solid was chromatographed on a column of C_{18} Silica Gel (YMC A-343, eluent; 5% methanol). The fractions containing the desired compound were

concentrated under reduced pressure, and the residue was freeze-dried to give 240 mg of 9i (39%).

Preparation of $9d \sim 9p$ was carried out by a method similar to that described for 9i.

The spectral data of various derivatives $9d \sim 9p$ are listed in Table 5.

Benzhydryl 7-[(Z)-2-(2-Tritylaminothiazol-4-yl)-2-methoxyiminoacetamido]-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate (8s)

Preparation of 8s, 8r, 8t, was carried out by a method similar to that described for 8i, using 16, 17^{13} instead of 15.

The spectral data for various derivatives $8r \sim 8t$ are listed in Table 4.

Sodium 7-[(Z)-2-(2-Aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-N,N-dimethylcarbamoyloxy-methyl-3-cephem-4-carboxylate (9s)

To a solution of anisole (10 ml) and trifluoroacetic acid (20 ml) under ice-cooling was added **8s** (1.46 g, 1.6 mmol), and the mixture was stirred at room temperature for 2 hours. The solvent was evaporated *in vacuo*, and the residue was triturated with diisopropylether (100 ml). The precipitate collected by filtration was mixed with sodium acetate (600 mg, 7.3 mmol) in methanol (15 ml). The mixture was evaporated to dryness, and the residue was solidified from 2-propanol. The precipitate was collected by filtration to give a crude product of **9s**. The solid was purified by chromatography on a column of C₁₈ Silica Gel (YMC A-343, eluent; 5% methanol). The fractions containing the desired compound were concentrated under reduced pressure and the residue was freeze-dried to give 71 mg of **9s** (8.5%).

Preparation of 9r, 9t was carried out by a method similar to that described for 9s.

The spectral data for derivatives $9r \sim 9t$ are listed in Table 5.

Pivaloyloxymethyl 7-[(Z)-2-(2-Aminothaizol-4-yl)-2-hydroxyiminoacetamido]-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate (10i)

To a solution of 9i (80 mg, 0.16 mmol) in N,N-dimethylformamide (2 ml) was added iodomethyl pivalate (37 mg, 0.16 mmol) dropwise under ice cooling. The mixture was stirred at the same temperature for 30 minutes and diluted with ethyl acetate. The reaction mixture was washed with water and then brine, and dried over anhydrous MgSO₄. The filtrate was concentrated *in vacuo*, and the residue was triturated with diisopropyl ether (50 ml) to yield 21 mg of 10i as an amorphous powder (23%).

Preparation of $10c \sim 10t$, $11a \sim 11j$ was carried out by a method similar to that described for 10i. The spectral data of various derivatives $10c \sim 10t$, $11a \sim 11j$ are listed in Table 6 and Table 7.

Benzhydryl 7-Formamido-3-(4-methyl-1-piperazinyl)carbonyloxymethyl-3-cephem-4-carboxylate-1oxide (5p)

To a solution of benzhydryl 7-formamido-3-hydroxymethyl-3-cephem-4-carboxylate-1-oxide (13; 22 g, 0.05 mol) in tetrahydrofuran (200 ml) under ice cooling was added N,N-carbonyldiimidazole (8.8 g, 0.055 mol), and the reaction mixture was strirred at the same temperature for 1 hour. To the reaction mixture were added N-methylpiperazine (10.25 g, 0.125 mol) and water (10 ml), and the mixture was stirred for 3 hours. The mixture was diluted with ethyl acetate (500 ml). The mixture was washed with water and then brine, dried over MgSO₄ and concentrated under reduced pressure to give the crude desired product. The residue was purified by silica gel column chromatography (eluent; dichloromethane - methanol, 80 : 20) to afford 2.3 g of **5p** (8%). ¹H NMR (CDCl₃) δ 2.30 (3H, s), 2.25~2.60 (4H, m), 3.25 and 3.88 (2H, ABq, J=19 Hz), 3.30~3.50 (4H, m), 4.52 (1H, d, J=5 Hz), 4.76 and 5.33 (2H, ABq, J=15 Hz), 6.14 (1H, dd, J=5, 10 Hz), 6.95 (1H, s), 7.00~7.50 (11H, m), 8.24 (1H, s).

Benzhydryl 7-[(Z)-2-(2-Tritylaminothiazol-4-yl)-2-trityloxyiminoacetamido]-3-(4-methyl-1-piperazinyl)carbonyloxymethyl-3-cephem-4-carboxylate-1-oxide hydrochloride (**8p**)

To a solution of 5p (10.6 g, 18.7 mol) in tetrahydrofuran (100 ml) and methanol (50 ml) was added 1 M hydrochloric acid (10 ml), and the mixture was stirred at room temperature for 6 hours. After being evaporated, ethyl ether (300 ml) was added to the residue and the resulting precipitate was collected by filtration to give 10.3 g of 7-amino cephem (7p) (90%).

To a solution of 7p (9.25 g, 15.2 mol) in N,N-dimethylformamide (18 ml) and triethylamine (2.3 ml,

1520

Table	5.	Spectral	data	and	yields	of	cephems $9d \sim t$.	
					-			

Compound	Yield (%)	MP (°C)	$[\alpha]_D^{24}$ in H ₂ O	IR (Nujol) cm^{-1} (C=O)	¹ H NMR (δ)	Solvent ^a
9d	14	145~148 (dec)	46 (c 0.5)	1767, 1694, 1663	2.54 (3H, s), 3.21, 3.51 (2H, ABq, $J = 18$ Hz), 4.60, 4.70 (2H, ABq, $J = 18$ Hz), 5.06 (1H, d, $J = 5$ Hz), 5.69 (1H, d, $J = 5$ Hz), 6.83 (1H, s)	D
9e	18	146~148 (dec)	50 (c 0.5)	1767, 1667, 1607	1.09 (3H, t, $J = 7$ Hz), 3.10 (2H, q, $J = 7$ Hz), 3.30, 3.57 (2H, ABq, $J = 18$ Hz), 4.79, 4.92 (2H, ABq, $J = 12$ Hz), 5.09 (1H, d, $J = 5$ Hz), 5.81 (1H, d, $J = 5$ Hz), 6.77 (1H, s)	D
9f	36	139~141 (dec)	41 (c 1.0)	1773, 1664, 1600	0.90 (3H, t, $J=8$ Hz), 1.48 (2H, tq, $J=7$, 8 Hz), 3.04 (2H, t, $J=7$ Hz), 3.32, 3.58 (2H, ABq, $J=18$ Hz), 4.80, 4.95 (2H, ABq, $J=13$ Hz), 5.09 (1H, d, $J=5$ Hz), 5.81 (1H, d, $J=5$ Hz), 6.77 (1H, e)	С
9g	14	138~141 (dec)	40 (c 0.5)	1772, 1670, 1605	(11, d, $J = 5112$), 6.77 (11, s) 3.30~3.70 (4H, m), 4.34~4.48 (2H, m), 4.80~5.00 (2H, m), 5.10 (1H, d, $J = 5$ Hz), 5.82 (1H, d, $J = 5$ Hz), 6.79 (1H, s)	С
9h	16	124~126 (dec)	26 (c 0.5)	1766, 1717, 1654	3.51, 3.61 (2H, ABq, $J=18$ Hz), 3.70~3.80 (2H, m), 4.80, 5.03 (2H, ABq, $J=13$ Hz), 5.10 (1H, d, $J=5$ Hz), 5.81 (1H, d, $J=5$ Hz), 6.78 (1H, s)	С
9i	39	138~142 (dec)	68 (c 1.0)	1770, 1687, 1592	2.70 (6H, br s), 3.42, 3.69 (2H, ABq, $J=19$ Hz), 4.67, 4.91 (2H, ABq, $J=13$ Hz), 5.22 (1H, d, $J=5$ Hz), 5.85 (1H, d, $J=5$ Hz), 7.00 (1H, s)	D
9j	15	148~150 (dec)	41 (c 0.5)	1767, 1677, 1611	$1.05 \sim 1.15$ (2.7H, m), $1.25 \sim 1.35$ (0.3H, m), 2.72 (0.3H, brs), 2.90 (2.7H, brs), 3.05 (0.2H, m), $3.25 \sim 3.40$ (1.8H, m), $3.40 \sim 3.50$ (1H, m), $3.70 \sim 3.78$ (1H, m), $4.70 \sim 4.78$ (1H, m), $4.90 \sim 5.00$ (1H, m), $5.24 \sim 5.27$ (1H, m), $5.85 \sim 5.90$ (1H, m), 7.02 (1H, s)	D
9k	8.8	$142 \sim 144$ (dec)	60 (c 0.5)	1770, 1679, 1597	$2.79 \sim 2.82$ (3H, m), $3.28 \sim 3.30$ (3H, m), $3.56 \sim 3.58$ (3H, m), $3.57 \sim 4.75$ (2H, m), 5.09 (1H, d, $J = 5$ Hz), 5.73 (1H, d, $J = 5$ Hz), 6.84 (1H, s)	D
91	25	121~122 (dec)	47 (<i>c</i> 1.0)	1767, 1668, 1605	$2.00 \sim 2.10$ (2H, m), 3.21, 3.47 (2H, ABq, $J=1.8$ Hz), $3.75 \sim 3.87$ (4H, m), 4.51, 4.70 (2H, ABq, $J=18$ Hz), 5.05 (1H, d, $J=5$ Hz), 5.68 (1H, d, $J=5$ Hz), 6.78 (1H, s)	D
9m	22	137~139 (dec)	43 (c 1.0)	1766, 1687, 1600	$1.84 \sim 1.94$ (4H, m), $3.25 \sim 3.60$ (4H, m), 3.56 , 3.66 (2H, ABq, $J = 18$ Hz), 4.82 , 5.02 (2H, ABq, $J = 13$ Hz), 5.11 (1H, d, $J = 5$ Hz), 5.81 (1H, d, $J = 5$ Hz), 6.77 (1H, s)	С
9n	28	$139 \sim 142 \; (dec)$	45 (c 1.0)	1769, 1687, 1621	$1.27 \sim 1.47$ (6H, m), $3.17 \sim 3.29$ (4H, m), 3.25 , 3.51 (2H, ABq, $J = 18$ Hz), 4.55 , 4.78 (2H, ABq, $J = 13$ Hz), 5.07 (1H, d, $J = 5$ Hz), 5.70 (1H, d, $J = 5$ Hz), 6.82 (1H, s)	D
90	15	147~149 (dec)	42 (c 0.5)	1764, 1674, 1605	3.42, 3.72 (2H, ABq, $J = 18$ Hz), 3.45 ~ 3.60 (4H, m), 3.70 ~ 3.80 (4H, m), 4.75, 4.95 (2H, ABq, $J = 13$ Hz), 5.23 (1H, d, $J = 5$ Hz), 5.86 (1H, d, $J = 5$ Hz), 7.01 (1H, s)	D
9p	8			1789, 1713, 1694	2.79 (3H, s), $2.89 \sim 3.20$ (4H, m), 3.26 , 3.56 (2H, ABq, $J = 18$ Hz), $3.31 \sim 3.44$ (2H, m), $4.02 \sim 4.18$ (2H, m), 4.57 , 4.81 (2H, ABq, $J = 13$ Hz), 5.08 (1H, d, $J = 5$ Hz), 5.70 (1H, d, $J = 5$ Hz), 6.89 (1H, s)	D
9r	38	$145 \sim 148$ (dec)	34 (c 0.5)	1769, 1667, 1613	2.55 (3H, s), 3.27, 3.52 (2H, ABq, $J=18$ Hz), 3.84 (3H, s), 4.53, 4.74 (2H, ABq, $J=12$ Hz), 5.06 (1H, d, $J=5$ Hz), 5.67 (1H, d, $J=5$ Hz), 6.86 (1H, s)	D
9s	9	138~140 (dec)	32 (c 0.5)	1770, 1680, 1616	$2.65 \sim 2.80$ (6H, m), 3.26, 3.48 (2H, ABq, $J = 18$ Hz), 3.83 (3H, s), 4.52, 4.75 (2H, ABq, $J = 12$ Hz), 5.05 (1H, d, $J = 5$ Hz), 5.66 (1H, d, $J = 5$ Hz), 6.85 (1H, s)	D
9t	10	134~136 (dec)	40 (c 0.5)	1763, 1695, 1604	$2.62 \sim 2.73$ (6H, m), 3.22 , 3.48 (2H, ABq, $J = 18$ Hz), 4.49 , 4.72 (2H, ABq, $J = 13$ Hz), $5.02 \sim 5.04$ (1H, m), $5.63 \sim 5.66$ (1H, m), 5.61 (2H, d, $J = 55$ Hz), 6.95 (1H, s)	D

^a C; CD₃OD, B; D₂O.

Compound	Yield (%)	MP (°C)	IR (Nujol) cm^{-1} (C=O)	¹ H NMR (δ)	Solvent ^a
10c	58	116~118 (dec)	1788, 1748, 1714	1.21 (9H, s), 3.53, 3.69 (2H, ABq, $J = 19$ Hz), 4.78, 5.08 (2H, ABq, $J = 14$ Hz), 5.19 (1H, d, $J = 5$ Hz), 5.83 (1H, d, $J = 5$ Hz), 5.91 ~ 5.94 (2H, m), 6.76 (1H, s)	С
10d	20	118~120 (dec)	1787, 1751, 1677	1.14 (9H, s), 2.70 (3H, s), $3.42 \sim 3.59$ (2H, m), $4.72 \sim 4.76$ (1H, m), $4.95 \sim 5.05$ (2H, m), $5.78 \sim 5.81$ (1H, m), $5.81 \sim 5.89$ (2H, m), 6.93 (1H, s)	Α
10i	23	$90 \sim 92 \; (dec)$	1791, 1752, 1689	1.24 (9H, s), 2.92 (6H, br s), 3.50, 3.61 (2H, ABq, J=19 Hz), 4.89, 5.17 (2H, ABq, J=13 Hz), 5.07 (1H, d, J=5 Hz), 5.85, 5.97 (2H, ABq, J=6 Hz), 5.93 (1H, dd, J=5, 8 Hz), 7.08 (1H, s), 7.26 (2H, s)	Α
10j	57	199~122 (dec)	1786, 1752, 1679	$1.21 \sim 1.25$ (9H, m), 2.97 (3H, s), $3.41 \sim 3.45$ (2H, m), $3.46 \sim 3.60$ (2H, m), $3.71 \sim 3.77$ (2H, m), $4.82 \sim 4.95$ (2H, m), $5.05 \sim 5.08$ (1H, m), 5.86 , 5.95 (2H, ABq, $J = 6$ Hz), $5.88 \sim 5.91$ (1H, m), 7.00 (1H, s)	A
10k	34	100~103 (dec)	1788, 1753, 1685	1.12 (3H, t, $J = 7$ Hz), 1.24 (9H, s), 2.89 (2H, s), 2.90 (1H, s), 3.25 ~ 3.35 (2H, m), 3.47, 3.61 (1H, ABq, $J = 18$ Hz), 3.48, 3.61 (1H, ABq, $J = 18$ Hz), 4.89 (1H, d, $J = 13$ Hz), 5.06 (1H, d, $J = 5$ Hz), 5.10 ~ 5.20 (1H, m), 5.82, 5.97 (1H, ABq, $J = 5$ Hz), 5.92 (1H, dd, $J = 5$ Hz), 7.07 (1H, s)	A
101	54	118~122 (dec)	1787, 1752, 1685	1.12 (9H, m), 2.24~2.30 (2H, m), 3.47, 3.60 (2H, ABq, $J=18$ Hz), 3.95~4.10 (4H, m), 4.87, 5.12 (2H, ABq, $J=14$ Hz), 5.06 (1H, d, $J=5$ Hz), 5.87, 5.95 (2H, ABq, $J=6$ Hz), 5.90~5.93 (1H, m), 7.07 (1H, s)	A
10m	28	119~121 (dec)	1790, 1755, 1683	1.22 (9H, s), 1.84~1.95 (4H, m), 3.35~3.40 (4H, m), 3.56, 3.71 (2H, ABq, <i>J</i> =19 Hz), 4.78, 5.14 (2H, ABq, <i>J</i> =13 Hz), 5.20 (1H, d, <i>J</i> =5 Hz), 5.84 (1H, d, <i>J</i> =5 Hz), 5.94~5.98 (2H, m), 6.78 (1H, s)	C
10n	59	119~122 (dec)	1789, 1753, 1678	1.13 (9H, s), $1.48 \sim 1.66$ (6H, m), $3.37 \sim 3.46$ (4H, m), 3.54 , 3.69 (2H, ABq, $J = 18$ Hz), 4.77 , 5.13 (2H, ABq, $J = 13$ Hz), 5.20 (1H, d, $J = 5$ Hz), 5.84 , 5.93 (2H, ABq, $J = 6$ Hz), 5.92 (1H, d, $J = 5$ Hz), 6.76 (1H, s)	C
100	24	124~126 (dec)	1789, 1752, 1682	1.12 (9H, s), $3.45 \sim 3.50$ (5H, m), $3.58 \sim 3.70$ (5H, m), 4.89 , 5.18 (2H, ABq, $J = 12$ Hz), 5.07 (1H, d, $J = 5$ Hz), 5.84 , 5.97 (2H, ABq, $J = 5$ Hz), 5.93 (1H, dd, $J = 5$, 8 Hz), 7.08 (1H, s)	A
10q	86	137~139 (dec)	1789, 1745, 1681	1.23 (9H, s), 3.48, 3.61 (2H, ABq, $J=19$ Hz), 4.07 (3H, s), 4.72, 5.11 (2H, ABq, $J=14$ Hz), 5.08 (1H, d, $J=5$ Hz), 5.24 (2H, br s), 5.87, 5.95 (2H, ABq, $J=6$ Hz), 6.01 (1H, d, $J=5$ Hz), 6.91 (1H, s)	A
· 10r	57	118~120 (dec)	1789, 1747, 1681	1.14 (9H, s), 2.70 (3H, s), $3.42 \sim 3.59$ (2H, m), 4.00 (3H, s), $4.72 \sim 4.76$ (1H, m), $4.95 \sim 5.05$ (2H, m), $5.78 \sim 5.81$ (1H, m), $5.81 \sim 5.89$ (2H, m), 6.93 (1H, s)	, А
10s	65	120~122 (dec)	1788, 1752, 1681	1.23 (9H, s), 2.92 (6H, s), 3.50, 3.60 (2H, ABq, $J = 19$ Hz), 4.09 (3H, s), 4.84, 5.16 (2H, ABq, $J = 14$ Hz), 5.09 (1H, d, $J = 5$ Hz), 5.85 ~ 5.95 (2H, m), 5.99 ~ 6.03 (1H, m), 6.92 (1H, s), 7.49 (1H, d, $J = 8$ Hz)	, A

Table 6. Spectral data and yields of POM cephem esters $10c \sim s$.

^a A; CDCl₃, C; CD₃OD.

Compound	Yield (%)	MP (°C)	IR (Nujol) cm^{-1} (C=O)	¹ H NMR (δ)	Solvent ^a
11a	14	123~126 (dec)	1784, 1768, 1682	$1.55 \sim 1.58$ (3H, m), 2.11 (3H, d, $J = 5$ Hz), 2.94 (6H, br s), $3.47 \sim 3.65$ (2H, m), $4.83 \sim 5.24$ (3H, m), $5.83 \sim 5.94$ (1H, m), $6.98 \sim 7.15$ (2H, m)	Α
11b	63	102~104 (dec)	1789, 1754, 1682	0.90 (6H, t, $J=7$ Hz), 1.50~1.70 (4H, m), 2.25~2.34 (1H, m), 2.93 (6H, br s), 3.49, 3.60 (2H, ABq, $J=18$ Hz), 4.91, 5.15 (2H, ABq, $J=14$ Hz), 5.07 (1H, d, $J=5$ Hz), 5.84~5.95 (3H, m), 7.07 (1H, s)	Α
11c	10	104~106 (dec)	1786, 1752, 1685	1.18 (6H, t, $J = 7$ Hz), 1.56 (3H, d, $J = 6$ Hz), 2.55 ~ 2.65 (1H, m), 2.92 (6H, s), 3.50, 3.61 (1H, ABq, $J = 18$ Hz), 3.51, 3.62 (1H, ABq, $J = 18$ Hz), 4.90, 5.12 (1H, ABq, $J = 14$ Hz), 4.95, 5.18 (1H, ABq, $J = 14$ Hz), 5.05 (0.5H, d, $J = 5$ Hz), 5.07 (0.5H, d, $J = 5$ Hz), 5.88 ~ 5.95 (1H, m), 7.00 (0.5H, q, $J = 6$ Hz), 7.10 (0.5H, q, $J = 6$ Hz), 7.09 (1H, s)	A
11d	15	97~100 (dec)	1788, 1749, 1683	0.90 (3H, t, $J = 7$ Hz), 0.91 (3H, t, $J = 7$ Hz), 1.50 ~ 1.75 (7H, m), 2.20 ~ 2.30 (1H, m), 2.92 (6H, s), 3.48, 3.60 (1H, ABq, $J = 18$ Hz), 3.53, 3.61 (1H, ABq, $J = 18$ Hz), 4.90, 5.14 (1H, ABq, $J = 14$ Hz), 4.97, 5.15 (1H, ABq, $J = 14$ Hz), 5.07 (1H, d, $J = 5$ Hz), 5.88 ~ 5.95 (1H, m), 7.00 ~ 7.10 (1H, m), 7.08 (1H, s)	A
11e	4.5	99~100 (dec)	1787, 1751, 1683	1.09 (9H, s), 1.56 (3H, d, $J = 6$ Hz), 2.20 ~ 2.30 (2H, m), 2.93 (6H, s), 3.48, 3.60 (1H, ABq, $J = 18$ Hz), 3.50, 3.61 (1H, ABq, $J = 18$ Hz), 4.91, 5.12 (1H, ABq, $J = 12$ Hz), 4.98, 5.17 (1H, ABq, $J = 12$ Hz), 5.03 ~ 5.10 (1H, m), 5.86 ~ 5.93 (1H, m), 6.97 ~ 7.12 (1H, m), 7.12 (1H, s)	Α
11f	10	122~126 (dec)	1789, 1763, 1683	1.33 (3H, t, $J = 7$ Hz), 1.58 ~ 1.63 (3H, m), 2.94 (6H, br s), 3.51, 3.61 (1H, ABq, $J = 18$ Hz), 3.51, 3.62 (1H, ABq, $J = 18$ Hz), 4.20 ~ 4.32 (2H, m), 4.91, 5.17 (1H, ABq, $J = 14$ Hz), 4.99, 5.22 (1H, ABq, $J = 14$ Hz), 5.05 (0.5H, d, $J = 5$ Hz), 5.10 (0.5H, d, $J = 5$ Hz), 5.90 ~ 5.98 (1H, m), 6.92 (0.5H, q, $J = 6$ Hz), 7.08 (1H, s)	A
11g	51	114~116 (dec)	1789, 1761, 1683	1.26 (6H, m), 2.90 (3H, s), 2.92 (3H, s), 3.55, 3.71 (2H, ABq, $J=18$ Hz), 4.78, 5.13 (2H, ABq, $J=14$ Hz), 5.20 (1H, d, $J=5$ Hz), 5.80 (1H, d, $J=5$ Hz), 5.90 ~ 5.97 (1H, m), 6.84 (1H, s)	С
11h	30	118~121 (dec) $[\alpha]_{D}^{24}$ 50 (c 0.5, MeOH)	1793, 1760, 1687	1.27 (3H, d, $J = 6$ Hz), 1.28 (3H, d, $J = 6$ Hz), 1.54 (3H, d, $J = 6$ Hz), 2.91 (3H, s), 2.93 (3H, s), 2.56, 3.70 (2H, ABq, $J = 19$ Hz), 4.80 ~ 5.06 (3H, m), 5.20 (1H, d, $J = 5$ Hz), 6.75 (1H, s), 6.85 (0.5H, q, $J = 6$ Hz), 6.94 (0.5H, q, $J = 6$ Hz)	С
11i	19	99~100 (dec)	1789, 1759, 1682	$1.10 \sim 1.60$ (6H, m), $1.58 \sim 1.63$ (3H, m), $1.66 \sim 2.00$ (4H, m), 2.93 (6H, s), 3.52 , 3.40 (2H, ABq, $J = 18$ Hz), $4.60 \sim 4.70$ (1H, m), 4.89 (0.5H, d, $J = 12$ Hz), 4.97 (0.5H, d, $J = 12$ Hz), $6.83 \sim 6.94$ (1H, m), 6.89 (0.5H, q, $J = 6$ Hz), 6.89 (0.5H, q, $J = 6$ Hz), 7.15 (1H, s)	Α
11j	49	121~123 (dec)	1821, 1795, 1738, 1681	2.20 (3H, s), 2.87 (3H, s), 2.92 (3H, s), 3.52, 3.69 (2H, ABq, $J=18$ Hz), 4.80 ~ 5.18 (4H, m), 5.20 (1H, d, $J=5$ Hz), 5.92 (1H, d, $J=5$ Hz), 6.76 (1H, s)	C • 1

Table 7. Spectral data and yields of various type esters $11a \sim j$.

^a A; CDCl₃, C; CD₃OD.

16.9 mol), **15** (10.2 g, 15.2 mol) were added N,N'-dicyclohexylcarbidiimide (3.13 g, 15.2 mol) and 1-hydroxybenztriazole (2.05 g, 15.2 mol), and the mixture was stirred at room temperature for 2 hours. The precipitate was removed by filtration and the filtrate was diluted with *n*-hexane (700 ml). The oily product was collected by decantation and the residue was purified by silica gel column chromatography (eluent; dichloromethane - methanol, 98:2) to give 3.1 g of **8p** (17%). ¹H NMR (CDCl₃) δ 2.47 (3H, s), 2.40~2.75 (4H, m), 3.02 and 3.65 (2H, ABq, J=18 Hz), 3.42~3.70 (4H, m), 4.47 (1H, d, J=5 Hz), 4.74 and 5.27 (2H, ABq, J=14 Hz), 6.36 (1H, dd, J=5, 10 Hz), 6.43 (1H, s), 6.96 (1H, s), 7.20~7.60 (41H, m), 7.72 (1H, d, J=10 Hz).

7-[(Z)-2-(2-Aminothiazol-4-yl)-2-hydroxyiminoacetamido]-3-(4-methyl-1-piperazinyl)carbonyloxymethyl-3-cephem-4-carboxylic acid ditrifluoroacetate (9p)

To a solution of **8p** (4.0 g, 3.4 mmol) in dichloromethane (24 ml) under ice cooling was added phosphorus trichloride (2.3 g, 16.8 mmol), and the mixture was stirred at the same temperature for 1 hour. To the reaction mixture was added *n*-hexane (500 ml), and the precipitate was collected by filtration. The residue was added to a solution of anisole (25 ml) and trifluoroacetic acid (33 ml), and the mixture was stirred for 1 hour and diluted with diisopropyl ether (200 ml). The precipitate was collected through filtration and was added to a solution of 90% formic acid (25 ml). After being stirred for 2 hours, the reaction mixture was diluted with a solution of ethyl acetate (100 ml) and diisopropyl ether (100 ml), and the precipitate was filtered off to give crude **9p**, which was chromatographed on a column of C₁₈ Silica Gel (YMC A-343; eluent; $1 \sim 10\%$ methanol - 0.1% trifluoroacetic acid). The fractions containing the desired compound were concentrated under reduced pressure, and the residue was freeze-dried to provide 200 mg of **9p** (8%).

The spectral data of **9p** are listed in Table 5.

Benzhydryl 7-[(E)-2-(2-Aminothiazol-4-yl)-2-hydroxyiminoacetamido]-3-N,N-dimethylcarbamoyl oxyymethyl-3-cephem-4-carboxylate (8v)

To a solution of **8u** (6.05 g, 6.9 mmol) in acetonitrile (70 ml) was added 12 m hydrochloric acid (1.97 ml), and the mixture was stirred for 20 hours at room temperature and adjusted to pH 6 with sodium bicarbonate solution. To the mixture were added ethyl acetate (250 ml) and water (200 ml), and the organic layer was separated. The organic layer was evaporated to dryness and the residue was chromatographed on a column of silica gel (Wako C-200 200 g; eluent; benzene - acetone, 4:1). The fractions containing the desired product were collected and evaporated to give 1.03 g of **8v** (17%). ¹H NMR (CDCl₃) δ 2.84 (3H, s), 2.89 (3H, s), 3.45 and 3.57 (2H, ABq, J=19 Hz), 4.84 and 5.11 (2H, ABq, J=14 Hz), 5.04 (1H, d, J=5 Hz), 5.29 (2H, s), 5.90~6.00 (1H, m), 6.97 (1H, s), 7.26~7.42 (10H, m), 7.44 (1H, s).

Sodium 7-[(E)-2-(2-Aminothiazol-4-yl)-2-hydroxyiminoacetamido]-3-N,N-dimethylcarbamoyloxymethyl-3-cephem-4-carboxylate (9v)

To a solution of **8v** (1.03 g, 1.2 mmol) in dichloromethane (22 ml) were added trifluoroacetic acid (1 ml) and anisole (0.5 ml), and the mixture was stirred at room temperature for 40 minutes. To the mixture was added diisopropyl ether (50 ml), and the resulting precipitate was collected by filtration. The crude material was purified by C_{18} silica gel chromatography, and the desired fractions were collected and concentrated under reduced pressure. The residue was freeze-dried to give 220 mg of **9v** (37%). MP 154~157°C, $[\alpha]_D$ 61 (24°C, c 0.5, H₂O), ¹H NMR (D₂O) δ 2.9 (6H, br s), 3.43 and 3.69 (2H, ABq, J=18 Hz), 4.69 and 4.92 (2H, ABq, J=13 Hz), 5.20 (1H, d, J=5 Hz), 5.82 (1H, d, J=5 Hz), 7.56 (1H, s), IR (nujol) cm⁻¹; 1765, 1681, 1606.

References

- SADAKI, H; H. IMAIZUMI, T. INABA, T. HIRAKAWA, Y. MUROTANI, Y. WATANABE, S. MINAMI & I. SAIKAWA: Studies on β-lactam antibiotics for medicinal purpose. XVIII. Synthesis and structure-activity relationships of 7β-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-substituted methyl-3-cephem-4-carboxylic acid derivatives. Yakugaku Zasshi (Japan) 106:129~146, 1986
- YAMANAKA, H.; T. CHIBA, K. KAWABATA, H. TAKASUGI, T. MASUGI & T. TAKAYA: Studies on β-lactam antibiotics IX. Synthesis and biological activity of new orally active cephalosporin, cefixime (FK027). J. Antibiotics 38:

1728~1751, 1985

- FUJIMOTO, K.; S. ISHIHARA, H. YANAGISAWA, J. IDE, E. NAKAYAMA, H. NAKAO, S. SUGAWARA & M. IWATA: Studies on orally active cephalosporin esters. J. Antibiotics 40: 370~384, 1987
- INAMOTO, Y.; T. CHIBA, T. KAMIMURA & T. TAKAYA: FK-482, A new orally active cephalosporin, synthesis and biological properties. J. Antibiotics 40: 828 ~ 830, 1988
- SAKAGAMI, K.; K. ATSUMI, A. TAMURA, T. YOSHIDA, K. NISHIHATA & S. FUKATSU: Synthesis and oral activity of ME1207, a new orally active cephalosporin. J. Antibiotics 43: 1047~1050, 1990
- 6) YOSHIMURA, Y.; N. HAMAGUCHI & T. YASHIKI: Preparation of 1-acyloxyethyl esters of 7-[2-(2-aminothiazol-4yl)acetamido]-3[[(1-(2-dimethylaminoethyl)-1H-tetrazol-5-yl)thio]methyl]ceph-3-em-4-carboxylic acid (cefotiam) and their oral absorption in mice. J. Antibiotics 39: 1329~394, 1986
- NISHIMURA, T.; Y. YOSHIMURA, A. MIYAKE, M. YAMAOKA, K. TAKAHASHI, N. HAMAGUCHI, S. HIRAI, T. YASHIKI & M. NUMATA: Orally active 1-(cyclohexyloxycarbonyloxy)alkyl ester prodrugs of cefotiam. J. Antibiotics 40: 81~90, 1987
- 8) KAMACHI, H.; Y. NARITA, T. OKITA, Y. ABE, S. IIMURA, K. TOMATSU, T. YAMASAKI, J. OKUMURA, T. NAITO, T. OKI & H. KAWAGUCHI: Synthesis and biological activity of a new cephalosporin, BMY-28232 and its prodrug-type esters for oral use. J. Antibiotics 41: 1602~1616, 1988
- KUME, M.; T. KUBOTA, Y. KIMURA, H. NAKASHIMIZU, K. MOTOKAWA & M. NAKAO: Orally active cephalosporins II. Synthesis and structure-activity relationships of new 7β-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephalosporins with 1,2,3-triazole in C-3 side chain. J. Antibiotics 46: 177~192, 1993
- 10) ΤΑΚΑΥΑ, Η.; Κ. ΚΑWABATA, Κ. ΜΙΥΑΙ, Η. ΤΑΚΑSUGI, Τ. ΚΑΜΙΝUMA, Υ. MINE & T. ΤΑΚΑΥΑ: Studies on β-lactam antibiotics. III. Synthesis and enzymatic stability of 3-acyloxymethyl-7β-[(Z)-2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetamido]3-cephem-4-carboxylic acids. J. Antibiotics 34: 1300~1310, 1981
- UEDA, I.; M. KOBAYASHI, N. YAMADA & H. HIROKI (Fujisawa Pharmaceutical Co.) 3-(carbamoyloxymethyl)-2(or 3)-cephem-4-carboxylic acids and their esters. Japan Kokai Tokkyo Koho, 55-57,592, [CA 94: 30768q, 1981]
- NUMATA, M.; I. MINAMIDA, S. TSUSHIMA, T. NISHIMURA, M. YAMAOKA & N. MATSUMOTO: Studies of new cephalosporing with potent antibacterial activities. Chem. Pharm. Bull. 25: 3117~3119, 1977
- OCHIAI, M.; O. AKI, A. MORIMOTO, T. OKADA & Y. MATSUSHITA: New cephalosporin derivatives with high antibacterial activities. Chem. Pharm. Bull. 25: 3115~3117, 1977
- 14) BUCOURT, R.; R. HEYMES, A. LUTZ, L. PÉNASSE & J. PERRONNET: Cephalosporins a chaines amino-2-thiazolyl-4 acetyles, Influence de presence et de la configuration d'un groupe oxyimino sur l'active antibacterienne. Tetrahedron 34: 2233~2243, 1978
- BELL, R.; W. M. FOXTON & E. B. LOOKER: Cephalosporin antibiotics (Glaxo Group Ltd.) EP 181,172 [CA 105: 152823, 1986]
- 16) MACHIDA, Y.; T. KAMIYA, S. NEGI, T. NAITO, Y. KOMATSU, S. NOMOTO, I. SUGIYAMA, H. YAMAUCHI: Preparation of propenylcephem derivatives as antibiotics (Eisai Co., Ltd.) WO 8703,875 [CA 109: 110154e, 1988]
- 17) T. KAMIYA, T. NAITO, Y. KAI, Y. KOMATSU, M. SASHO, N. SATO, T. NAKAMURA, S. NEGI, Y. MACHIDA & H. YAMAUCHI: Abstract No. 447, 28th Interscience Conference on Antimicrobial Agents and Chemotherapy 1988